The Completion of an Abelian Category
نویسنده
چکیده
Any category A can be embedded in its right completion A. When A is small and abelian, this completion A is AB5 and the embedding is exact.
منابع مشابه
On continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کاملOn categories of merotopic, nearness, and filter algebras
We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
متن کاملExact completion and representations in abelian categories
When the exact completion of a category with weak finite limits is a Mal’cev category, it is possible to combine the universal property of the exact completion and the universal property of the coequalizer completion. We use this fact to explain Freyd’s representation theorems in abelian and Frobenius categories. MSC 2000 : 18A35, 18B15, 18E10, 18G05.
متن کاملComparing Completions of a Space at a Prime
There are two practical ways to complete an abelian group A at a prime p. One could complete A with respect to the neighborhood base of zero given by the subgroups pA. This completion, called p-completion, is limA/pA. Or one could complete A with respect to the neighborhood base of zero given by subgroups B ⊆ A of finite p-power index. This completion, called p-pro-finite completion, is limAα w...
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کامل